[Level 1] Quantitative Methods

[Tóm tắt kiến thức quan trọng] Module 3: Probability Concepts

Bài viết cung cấp cho người đọc kiến thức về Module 3 môn QUANT của chương trình CFA level I

1. Một số khái niệm cơ bản của xác suất

1.1. Biến ngẫu nhiên, kết quả và sự kiện

Biến ngẫu nhiên (Random variable) là một giá trị bằng số, thể hiện kết quả của một phép thử ngẫu nhiên.

Kết quả (Outcome) là các giá trị có thể có của một biến ngẫu nhiên.

Sự kiện (Event) có thể là một kết quả hoặc một tập hợp nhiều kết quả.

Xác suất (Probability) của một biến cố là % tượng trưng cho khả năng có thể xảy ra biến cố đó trong một phép thử liên quan.

1.2. Các đặc tính cơ bản của xác suất

Các đặc tính cơ bản của xác suất:

  • P(A): Xác suất xảy ra biến cố A (0 ≤ P(A) ≤ 1).

  • Biến cố xung khắc (Mutually exclusive events): mô tả hai hoặc nhiều biến cố không thể xảy ra đồng thời.

  • Hệ biến cố đầy đủ (Exhaustive): các sự kiện phải bao gồm tất cả các kết quả có thể xảy ra.

  • Tổng các xác suất của bất kỳ tập hợp nào của biến cố xung khắc và biến cố đầy đủ đều bằng 1.

1.3. Phân biệt xác suất thực nghiệm, chủ quan và tiên nghiệm

Có 2 trường phái xác suất là xác suất chủ quan và xác suất khách quan. Trong xác suất khách quan, cũng chia ra 2 trường phái là xác suất thực nghiệm (empirical probability) và xác suất tiên nghiệm (priori probability). Trong đó:

  • Xác suất chủ quan (Subjective probability): phản ánh nhận thức về kết quả xảy ra dựa trên đánh giá cá nhân hoặc chủ quan; phụ thuộc vào kỳ vọng, sở thích, kinh nghiệm và sự đánh giá về tương lai của người ra quyết định.
  • Xác suất khách quan (Objective probability): xác suất được tính dựa trên tần suất xuất hiện của một sự kiện nhất định.
    • Xác suất tiên nghiệm (Priori probability): xác suất tiên nghiệm, hay xác suất biết trước, là xác suất khách quan tính được dựa trên kiến thức và suy luận logic, thay vì quan sát và thực nghiệm.
    • Xác suất thực nghiệm (Emperical probability): xác suất thực nghiệm là xác suất khách quan tính dược dựa trên dữ liệu quan sát và thực nghiệm.

1.4. Mô tả xác suất của một sự kiện dưới dạng Odds for E và Odds Against E

Odd là tỉ lệ giữa xác suất xảy ra 1 sự kiện so với xác suất không xảy ra sự kiện đó.

  1. Odds for :

  2. Odds against

Trong đó:

  • P(E) là xác suất xảy ra sự kiến đó.

2. Xác suất có điều kiện (Conditional probability) và xác suất vô điều kiện (Unconditional probability); sự kiện độc lập (Independent events) và sự kiện phụ thuộc (Dependent events)

2.1. Xác suất có điều kiện (Conditional probability) và xác suất vô điều kiện (Unconditional probability)

Xác suất vô điều kiện (unconditional probability) là xác suất xảy ra của một biến cố nhất định, không phụ thuộc vào sự xảy ra của biến cố nào trước/sau đó.

Xác suất có điều kiện (conditional probability) là xác suất của một sự kiện xảy ra với điều kiện một sự kiện khác xảy ra. Công thức tính xác suất có điều kiện như sau:

P (A I B) = P(AB) / P(B)

Trong đó:

  • P (A I B): Xác suất của sự kiện A với điều kiện rằng sự kiện B xảy ra.
  • P(AB): Xác suất khi sự kiện A và B cùng xảy ra.
  • P (B): Xác suất xảy ra sự kiện B

2.2. Sự kiện độc lập (Independent events) và sự kiện phụ thuộc (Dependent events)

Sự kiện độc lập (Independent events): Một sự kiện được xem là độc lập khi và chỉ khi sự xuất hiện của một sự kiện này không ảnh hưởng đến xác suất xuất hiện của sự kiện kia. 

P(A|B) = P(A) hoặc P(B|A) = P(B)

Sự kiện phụ thuộc (Dependent events): Các sự kiện không thỏa mãn được yêu cầu của sự kiện độc lập là các sự kiện phụ thuộc.

3. Đo lường xác suất với quy tắc cộng, quy tắc nhân và quy tắc tổng hợp xác suất

3.1. Quy tắc cộng

  • P(A or B) = P(A) + P(B) – P(AB)

  • Đối với các biến cố xung khắc: P(A or B) = P(A) + P(B)

3.2. Quy tắc nhân

  • P(AB) = P(A I B) x P(B) = P(B I A) x P(A)

  • Đối với các biến cố độc lập: P(AB) = P(A) x P(B)

3.3. Quy tắc tổng hợp xác suất

4. Giá trị kỳ vọng, phương sai và độ lệch chuẩn của các biến ngẫu nhiên

4.1. Giá trị kỳ vọng (Expected value): Là trung bình công có trọng số xác suất của các kết quả đầu ra có thể xảy ra của biến ngẫu nhiên.

4.2. Phương sai (Variance): Là giá trị kỳ vọng của bình phương độ lệch của các kết quả đầu ra và giá trị kỳ vọng của biến ngẫu nhiên.

4.3. Độ lệch chuẩn (Standard deviation): Là căn bậc hai dương của phương sai của biến ngẫu nhiên.

4.4. Sơ đồ cây (Tree diagram): có thể đại diện cho một loạt các sự kiện độc lập hoặc xác suất có điều kiện. Mỗi nút (node) trên sơ đồ đại diện cho một sự kiện và được liên kết với xác suất của sự kiện đó.
Ứng dụng cơ bản của cây xác suất:

• Sơ đồ cây là một cách thể hiện sự kết hợp của hai hoặc nhiều sự kiện.

• Mỗi nhánh sẽ gồm kết quả và xác suất xảy ra kết quả đó.

5. Giá trị kỳ vọng, phương sai, độ lệch chuẩn, hiệp phương sai và hệ số tương quan của các lợi nhuận của tài sản trong danh mục đầu tư

5.1. Expected Return (Lợi nhuận dự kiến)

5.2. Covariance (Tính toán dựa trên dữ liệu xác suất)

5.3. Correlation (Hệ số tương quan)

5.4. Variance (Phương sai)

5.5. Standard Deviation (Độ lệch chuẩn)

6. Công thức Bayes's và các quy tắc đếm

6.1. Công thức Bayes

6.2. Các công thức đếm

  • Giai thừa (Factorial):

    n! = n(n – 1)(n – 2)...1

  • Đa thức (Labeling):

  • Tổ hợp (Combination):

  • Chỉnh hợp (Permutation):